The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization

نویسندگان

  • Aparna Zagabathuni
  • Sudipto Ghosh
  • Shyamal Kumar Pabi
چکیده

A suspension of particles below 100 nm in size, usually termed as nanofluid, often shows a notable enhancement in thermal conductivity, when measured by the transient hot-wire method. In contrast, when the conductivity of the same nanofluid is measured by the laser flash method, the enhancement reported is about one order of magnitude lower. This difference has been quantitatively resolved for the first time on the basis of the collision-mediated heat transfer model for nanofluids proposed earlier by our research group. Based on the continuum simulation coupled with stochastic analysis, the present theoretical prediction agrees well with the experimental observations from different measuring methods reported in the literature, and fully accounts for the different results from the two measuring methods mentioned above. This analysis also gives an indication that the nanofluids are unlikely to be effective for heat transfer in microchannels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study of the results of adding alumina nanoparticles on viscosity and thermal conductivity of water and ethanol nanofluids

In recent decades, the use of nanofluids has attracted much attention due to its application in various fields such as medical and industries like oil and gas. The combination of nanoparticles with base fluids and its type can produce different results depending on the characteristics of the nanoparticles, one of which is the effect of changes in the viscosity and thermal conductivity of the na...

متن کامل

Thermal Conductivity of Cu and Al-Water Nanofluids

Nanofluids are suspensions of nanoparticles in the base fluids, a new challenge for thermal sciences provided by nanotechnology. In this paper, the tested fluids are prepared by dispersing the Al and Cu into water at three different concentrations such as 500, 1000 and 2000 ppm. Thermal conductivities of these fluids are measured experimentally by thermal property analyzer i.e. KD2 Pro by using...

متن کامل

Preparation of CuO/Water Nanofluids Using Polyvinylpyrolidone and a Survey on Its Stability and Thermal Conductivity

In this article CuO/water nanofluid was synthesized by using polyvinylpyrolidone (PVP) as the dispersant.  Thenanofluid stability period and the heat transfer enhancement were determinedby measuring the thermal conductivities. To study the nano-fluid stability, zeta (ζ) potential, and absorbency were measured under different pH values and PVP surfactant concentrations; also thermal conductivity...

متن کامل

Thermal and electrical conductivity of Aluminium Nitride nanofluids

This study was designed to experimentally measure the thermal and electrical conductivities of Aluminium Nitride/Ethylene Glycol (AlN/EG) nanofluids. Transmission electron microscopy (TEM) was used to characterize the shape of AlN nanoparticles. Nanofluids with different particle volume concentrations of 0.5%, 1%, 2%, 3%, 4%, and 5% were utilized. The thermal and electrical conductivities of the...

متن کامل

Effect of Functionalization Process on Thermal Conductivity of Graphene Nanofluids

   In this research, Graphene was synthesized by chemical vapor deposition (CVD) method in atmosphere pressure (14.7 psi). Different functionalization method was used for oxidizing of graphene such as acid and alkaline treatments. The Functionalized graphene (FG) was characterized by FTIR and Raman spectroscopy. Nanofluid with water and different concentration (0.05, 0.15 and 0.25 wt %) of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016